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SYSTEMS AND METHODS TO TRAIN

AND/OR UTILIZE MACHINE LEARNING TO

CLASSIFY SMART CONTRACTS IN

TRANSACTIONS RECORDED IN

IMMUTABLE DISTRIBUTED ELECTRONIC
STORAGE

FIELD OF THE DISCLOSURE

The present disclosure relates to specialized machine
learning, and improvements in graphical user interfaces that
leverage the machine learning.

BACKGROUND

Blockchain technology uses the blockchain, otherwise
known as a distributed ledger, a public ledger, a transaction
database, and/or other terms, to create a publicly verifiable
record of transactions. The blockchain may be implemented
through a network of independent and geographically dis-
tributed computers, often called nodes, which work together
to manage and validate transactions. Each of the computers
may store and maintain a copy of the blockchain. Transac-
tions may involve smart contracts. A smart contract may
refer to a digital agreement and/or set of functions. A smart
contract may automatically execute and enforce terms of the
agreement when certain conditions are met.

A “block explorer” may refer to an online tool that allows
users to view and interact with information on a blockchain,
which presents technical data in textual and/or table forms.

SUMMARY

Current block explorers are problematic. They present
technical data in textual and/or table forms, which is not
user-friendly for a percentage of the population that already
finds blockchain confusing. The explorers confuse new
users and do not aid in understanding blockchain concepts.
These problems are compounded when it comes to under-
standing smart contracts. When a smart contract is deployed,
the programming code of the smart contract may be
recorded on the blockchain. Casual users, and even sophis-
ticated users, may find it difficult to understand smart
contracts, even when viewed from block explorers that are
touted as user friendly. Deciphering code is simply not
attainable for many users.

To address these and/or other problems, one or more
implementations presented herein propose techniques to
train and/or utilize machine learning to classify smart con-
tracts recorded on a transaction log (e.g., blockchain) stored
in immutable distributed electronic storage (e.g., a network
of independent and distributed computers and/or other stor-
age media). The classifications may provide a basis for
generating graphical representations of the transactions,
and/or may provide a basis for other features and/or func-
tionality. Graphical representation may be achieved through
visualizations with shapes (e.g., graph nodes), lines (e.g.,
graph edges), and/or other content to show transaction
activities, and in particular, distinguish smart contracts from
other entities participating in transactions, as well as distin-
guish between different types of smart contracts. By way of
non-limiting illustration, different classes of smart contracts
may be represented differently so as to visually distinguish
between the different classes. These and/or other visual
characteristics make the underlying information more under-
standable, ensuring users don’t need to decipher complex
strings of characters and/or code to gain insights.

These, along with other features and/or functionality
presented herein, may be recognized by persons of ordinary
skill in the art as providing sophisticated computer-based
techniques to classify information recorded on a transaction
log (such as a blockchain), which may lead to improvements
upon graphical user interfaces, which leverage the classifi-
cations achieved through the various sophisticated techno-
logical approaches. Persons of ordinary skill in the art will
recognize that feature(s) and/or functionality described
herein are necessarily rooted in computer technology.

One or more implementations of a system configured to
train and/or utilize machine learning to classify smart con-
tracts recorded on a transaction log stored in immutable
distributed electronic storage may include one or more of
non-transitory electronic storage, one or more hardware
processors (also referred to herein as “physical” processors)
configured by machine-readable instructions, and/or other
components. Executing the machine-readable instructions
may cause the one or more hardware processors to facilitate
training and/or utilizing specialized machine learning as
described herein. The machine-readable instructions may
include one or more computer program components. The
one or more computer program components may include
one or more of a transaction component, a classification
component, a model component, and/or other components.

In some implementations of a system configured to train
a machine learning model, the transaction component may
be configured to obtain transaction information characteriz-
ing transactions recorded on a transaction log stored in
immutable distributed electronic storage. By way of non-
limiting illustration, the transaction information may include
first transaction information which characterizes a first trans-
action and/or other transactions.

In some implementations, as part of training of a machine
learning model, the classification component may be con-
figured to obtain classification information identifying con-
tract classes of one or more transactions. Individual trans-
actions may be classified in individual contract classes. An
individual contract class may represent an individual type of
smart contract. By way of non-limiting illustration, the
classification information may include first classification
information which identifies a first contract class for the first
transaction.

In some implementations, as part of a training of a
machine learning model, the model component may be
configured to aggregate one or more of transaction infor-
mation, classification information, and/or other information
into model training information. The model training infor-
mation may be information suitable for training a machine
learning model. By way of non-limiting illustration, the
model component may be configured to provide the model
training information and/or other information to a machine
learning model to train the machine learning model. Train-
ing the machine learning model may generate a trained
machine learning model. The trained machine learning
model may be trained to generate output comprising contract
classes of new transactions. “New” transactions may refer to
transactions newly recorded on a transaction log after a
model has been trained and/or to transactions that existed
prior to the training but not used as part of the training.

In some implementations of a system configured to utilize
a trained machine learning model, the transaction compo-
nent may be configured to obtain transaction information
characterizing new transactions recorded on a transaction
log stored in immutable distributed electronic storage. By
way of non-limiting illustration, the transaction information
may include second transaction information which charac-
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terizes a second transaction. The second transaction may
identify a first address and/or other addresses.

The model component may be configured to provide the
transaction information characterizing individual ones of the
new transactions as input into a trained machine learning
model. By way of non-limiting illustration, the second
transaction information may be provided as input into the
trained machine learning model.

The classification component may be configured to obtain
the output from the trained machine learning model and/or
perform other operations.

The classification component may be configured to gen-
erate, from the output and/or other information, classifica-
tion information. The classification information may include
the contract classes of the new transactions. By way of
non-limiting illustration, the classification information may
include first classification information which identifies a
contract class of the second transaction based on the output
of the trained machine learning model.

As used herein, any association (or relation, or reflection,
or indication, or correspondence) involving servers, proces-
sors, client computing platforms, and/or another entity or
object that interacts with any part of the system and/or plays
a part in the operation of the system, may be a one-to-one
association, a one-to-many association, a many-to-one asso-
ciation, and/or a many-to-many association or N-to-M asso-
ciation (note that N and M may be different numbers greater
than 1). As used herein, the phrase “configured to” is
intended to be interpreted broadly, as “being capable of or
suitable for performing” some function or feature, without
requiring any adaptations to provide said function or feature.

These and other features, and characteristics of the present
technology, as well as the methods of operation and func-
tions of the related elements of structure and the combina-
tion of parts and economies of manufacture, will become
more apparent upon consideration of the following descrip-
tion and the appended claims with reference to the accom-
panying drawings, all of which form a part of this specifi-
cation, wherein like reference numerals designate
corresponding parts in the various figures. It is to be
expressly understood, however, that the drawings are for the
purpose of illustration and description only and are not
intended as a definition of the limits of the invention. As
used in the specification and in the claims, the singular form
of “a”, “an”, and “the” include plural referents unless the
context clearly dictates otherwise.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a system configured to train and/or
utilize machine learning to classify smart contracts recorded
on a transaction log stored in immutable distributed elec-
tronic storage, in accordance with one or more implemen-
tations.

FIG. 2a illustrates a method to train a machine learning
model, in accordance with one or more implementations.

FIG. 2b illustrates a method to utilize a trained machine
learning model to classify smart contracts in transactions
recorded in immutable distributed electronic storage, in
accordance with one or more implementations.

FIG. 3 illustrates a user interface, in accordance with one
or more implementations.

FIG. 4 illustrates a user interface, in accordance with one
or more implementations.

DETAILED DESCRIPTION

FIG. 1 illustrates a system 100 configured to train and/or
utilize machine learning to classify smart contracts recorded

on a transaction log 150 stored in immutable distributed

electronic storage media 140 (also referred to as “immutable

distributed electronic storage”), in accordance with one or

more implementations. The classifications may facilitate

generation of graphical representations of transactions and/

or other functionality.

In some implementations, immutable distributed elec-

tronic storage media 140 may include a set of one or more

electronic storage media on which the rights to, and/or

transactions of, value are stored. In some implementations,

immutable distributed electronic storage media 140 may be

decentralized or centralized. In some implementations,

immutable distributed electronic storage media 140 may be

public or private. In some implementations, immutable

distributed electronic storage media 140 may store a trans-

action log 150, and/or other information.

The transaction log 150 may include one or more records

of transactions involving the transfer of value, various

mechanisms of transfer, and/or other information. In some

implementations, transaction log 150 may record indications

of ownership rights and/or other information. In some
implementations, value may be removed from transaction
log 150 and added or recorded on another transaction log
(not shown in FIG. 1) stored in immutable distributed
electronic storage media 140 and/or other storage media. In
some implementations, transfer of value may be facilitated
by implementation of one or more smart contracts.

In some implementations, transaction log 150 may be in
the form of one or more of an audit trail, an electronic ledger,
and/or other forms. By way of non-limiting illustration,
transactions recorded in transaction log 150 and stored in
immutable distributed electronic storage media 140 may
form a distributed electronic ledger. An example of a dis-
tributed electronic ledger may include a blockchain.

The transaction log 150 may comprise transaction records
that are grouped or linked together. For example, a transac-
tion log may be comprised of a set of transaction records,
with an individual transaction record corresponding to one
or more transactions. In relation to a blockchain, an indi-
vidual record may be referred to as a block. For example, an
individual record may be linked to one or more other
individual records. Individual records may be linked or
chained together to form a structure of records and/or a
hierarchy of records, such as, a chain of records.

Transactions may be defined within individual records by
information conveying transaction features values of trans-
action features, and/or other information. By way of non-
limiting illustration, transactions may be defined by one or
more of transaction identification (“transaction ID”), sender
identification (e.g., sender addresses), recipient identifica-
tion (e.g., recipient addresses), transaction fee(s), type of
value transferred, amount of value transferred, timestamp
when recorded (and/or timestamp when requested to be
recorded), record location, transaction flow, function calls,
progress characteristics, parameter values of smart contract
parameters, smart contract code (and/or references to smart
contract code), and/or other information. In some imple-
mentations, information such as function calls, parameter
values of contract parameters, and/or other information may
be included in, and/or otherwise defined by, smart contract
code that may be included in, and/or referenced by, the
information recorded to transaction log 150.

Transaction IDs may include unique identifiers that dis-
tinguish individual transactions from other transactions. A
unique identifier for a transaction ID may comprise a string
of alphanumeric characters.
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Addresses may comprise unique identifiers that identify
individual participants (e.g., senders and recipients)
involved in the transfer of value recorded to the transaction
log 150 and distinguish individual participants from other
participants. A unique identifier for an address may comprise
a string of alphanumeric characters.

A transaction fee may include the cost associated with
processing a transaction.

A timestamp may include a date and/or time (e.g., exact
date and/or time) when a transaction was recorded to the
transaction log 150.

A record location may include an identification of where
in the transaction log 150 a transaction was recorded. A
record location may include, for example, a unique identifier
associated with a specific record within a set of records
forming the transaction log 150.

A function call may refer to the invocation of a specific
function within a smart contract. When a function is called,
it executes the code within that function, potentially modi-
fying a contract’s state and/or returning a value.

Parameter values of smart contract parameters may define
rules, criteria, and/or other information upon which a smart
contract operates. Contract parameter values may comprise
the inputs provided when calling a function in a smart
contract. These parameter values may be of various types,
such as integers, strings, addresses, and/or arrays, and may
determine how a function behaves and/or other information
about data processing.

Progress characteristics may include a current state of
progress of a transaction, and/or other information. A current
state of progress may include one or more of amount of time
lapsed, amount of time remaining, amount of steps com-
pleted, amount of steps remaining, and/or other measure of
state of progress.

The transaction flow may include information which
differentiates, for individual addresses, between transactions
where value is being sent and where value is being received,
and/or may include other information. By way of non-
limiting illustration, the transaction flow may identify, for
individual addresses and individual transactions, whether
the individual transactions are “incoming” transfers of value
or “outgoing” transfers of value. Accordingly, the transac-
tion flow may identify, directly and/or indirectly, a direction
in which value is “moving,” e.g., from one address to
another.

In some implementations, transaction flow for an indi-
vidual transaction may include information referencing one
or more prior transactions and/or information. The informa-
tion referencing an individual prior transaction may include
an indication of an amount of value available to be trans-
ferred by a given address (e.g., “unspent value”). The
transaction flow of a given transaction may, at the conclu-
sion of the given transaction, include and/or generate infor-
mation indicating remaining unspent value. Remaining
unspent value may be determined, for example, based on a
given amount of value available to be transferred (obtained
by referencing a prior transaction), less the value transferred
in the given transaction. Accordingly, a subsequent transac-
tion may reference the record of the given transaction to
obtain an indication of an update to the amount of value
available to be subsequently transferred.

In some implementations, the term “value” as used herein
may refer to a digital representation of importance, monetary
worth, and/or usefulness. Rights pertaining to value may be
tracked, recorded, and/or otherwise registered on transaction
log 150. Value may be expressed quantitatively as a unit of
value, a subunit of value (e.g., a fraction or percentage of a

unit of value), an amount of value (e.g., an amount of
multiple units of value), and/or other expressions. Value may
be uniquely identified and/or uniquely identifiable. Value
may be conveyed in the form of one or more of tokens (e.g.,
tokens of value), coins, assets, credits, and/or other forms. A
unit of value may be fungible if it is functionally and/or
physically indistinguishable from other units of value. Value
may be non-fungible if it is unique and distinguishable from
other value (e.g., “one-of-a-kind”). Value may be semi-
fungible if there is a set of a limited number of similar but
distinguishable units of value.

In some implementations, individual units of value may
be characterized by value types. Value types may include
one or more of a currency type, utility type, a security type,
a non-fungible type, a governance type, and/or other types.

Currency type value may comprise a store of monetary
value. Currency type value may be fungible. Currency type
value may include one or more of digital currency, crypto-
currency, and/or other considerations. By way of non-
limiting illustration, currency type value may include one or
more of Ethereum, Bitcoin, Solana, Litecoin, and/or other
stores of monetary value.

Utility type value may be designed to provide access to
specific features or services. Unlike currency type value,
which primarily serves as a medium of exchange or store of
monetary value, utility type value may be used within a
specific application or network. By way of non-limiting
illustration, utility type value may be used to pay for trading
fees, participate in sales, access premium content, utilize
certain functionalities within a decentralized application
(dApp), and/or provide other features and/or functionality.

Security type value may represent ownership and/or
investment in a real-world asset and/or financial instrument.
Security type value may include security tokens and/or other
representation of ownership and/or investment in a real-
world asset and/or financial instrument.

Non-fungible type value may represent ownership of a
unique item and/or content. Unlike fungible value (e.g.,
currency type value) which is interchangeable and identical
in value, non-fungible type value may be distinct and may
not be exchangeable on a one-to-one basis. In some imple-
mentations, units of value of the non-fungible type may exist
as whole, indivisible units (e.g., cannot be divided into
smaller subunits). By way of non-limiting illustration, non-
fungible type value may include non-fungible tokens
(“NFTs”).

Governance type value may represent voting rights and/or
influence over the decisions and/or operations of a decen-
tralized organization or protocol (and may provide holders
thereof with those rights).

Participants in the transactions (e.g., senders and/or
recipients) may be identified by addresses. An individual
address may be associated with an individual participant.
Addresses may correspond to one or more of digital wallets,
smart contracts, validator addresses, staking addresses,
bridge addresses, exchange addresses (e.g., exchange
account receive address), and/or other addresses.

The transaction log 150 may be maintained by one or
more distributed computing platforms (not shown in FIG. 1).
A distributed computing platform may include electronic
storage media (e.g., immutable distributed electronic storage
media 140) configured to store part or all of transaction log
150. In some implementations, a distributed computing
platform may be implemented by one or more of client
computing platforms, non-transitory electronic storage, and/
or servers. An individual client computing platform, elec-
tronic storage, and/or server may form a “node” within the
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distributed computing platform. An individual node may
store an individual instance of transaction log 150 (e.g., a
copy of transaction log 150). An individual node may
perform a consensus process by which some or all nodes
agree on a state of transaction log 150, including whether
transactions are valid and should be recorded. A consensus
process may prevent double-spending, ensure integrity and
consistency of transaction log 150, and maintain trust among
participants. A consensus process may ensure a single ver-
sion of transaction log 150 is stored among the distributed
nodes, while further ensuring consistency and security with-
out a central authority. By way of non-limiting illustration,
the consensus process may include one or more of creating
a transaction, broadcasting the transaction to the network
(e.g., to some or all nodes), validating it at individual nodes
(e.g., verifying transaction flow, sufficient funds, etc.), pro-
posing the validated transaction be included in the transac-
tion log, achieving consensus (by some or all nodes) that the
transaction is valid, confirming compliance with other net-
work-specific rules, recording/including the transaction in
the transaction log, and/or other operations.

In some implementations, immutable distributed elec-
tronic storage media 140 may be publicly accessible. In
some implementations, immutable distributed electronic
storage media 140 may be private and/or permissioned. In
some implementations, transaction log 150 may be append-
only. In some implementations, existing records of transac-
tion log 150 may not be altered or deleted, unless multiple
copies are altered and/or consensus between nodes is
achieved. This is unlikely to happen provided that the
multiple instances (e.g., copies) are stored in different com-
puting platforms, e.g., in different geographical locations.
The multiple instances may be synchronized and/or syn-
chronizable. By way of non-limiting illustration, when a
node makes an update to its instance of the transaction log
150, the node may then propagate (e.g., broadcast) its
updated instance to other nodes in the network. The other
node(s) may then update their instance(s). If a node deter-
mines its instance does not match the instance(s) of one or
more other nodes, the node may request one or more updates
from one or more other nodes.

Individual records may be linked together in a manner
that prevents tampering and/or may have other features that
establish an “immutable” characteristic of this storage
scheme. By way of non-limiting illustration, records may be
linked together using a hash chain and/or digital signatures.
Hash values may be generated using fixed-output-length
one-way hashing functions that take variable-length input,
and may be effectively impossible (or, at least, computa-
tionally infeasible) to reverse. As such, a hashing function
may provide one-way encryption. Contents of individual
records may be digitally signed in a manner that proves
integrity and/or prevents tampering, e.g., by providing
authentication, as well as non-repudiation.

In some implementations, individual transactions may be
classified in individual transaction classes. The transaction
classes may include one or more of a transfer class, a swap
class, a stake class, a fee class, a creation class, a bridge
class, one or more contract classes, and/or other classes.

A transaction of the transfer class may refer to a transfer
of value from one address to another (e.g., one party sends
a specific amount of value directly to another party).

A transaction of the swap class may refer to a swap/
exchange of value of one type for value of another type.
Swapping/exchanging may be carried out through an
exchange. An exchange may refer to a platform through
which users may initiate purchases, sales, and/or trades of

value of varying types. By way of non-limiting illustration,
for cryptocurrency exchanges, this may mean converting
one cryptocurrency to another, and/or to fiat money. Indi-
vidual exchanges may use multiple addresses for different
purposes.

A transaction of the stake class may refer to the process
of transferring value to a staking wallet and/or platform
where value may be staked as part of a staking process. A
staking process may involve depositing and/or holding value
in association with a dedicated address to support operations
of a network, such as validating transactions and/or securing
a network. A staking process may hold value for an amount
of holding time (e.g., 30, 60, 90, or 120 days). After
completion of holding time, the value may be unlocked, e.g.,
deposited back in a user’s wallet. Staking may be commonly
used in Proof of Stake (POS) mechanisms, where network
validators are chosen based on amount of value they stake.
In return for staking value, users may earn rewards, often in
the form of additional value. This is an incentive for
participating and/or supporting a network.

A transaction of the fee class may refer to a transaction
involving the payment of fees. By way of non-limiting
illustration, fees may be paid to incentivize miners (in Proof
of Work networks), validators (in Proof of Stake networks)
for processing and confirming transactions, and/or other
considerations.

A transaction of the creation class may refer to a creation/
addition of new value in a transaction log and transferring
the value to one or more specified addresses. Creation of
new value may be referred to as “minting.” In some imple-
mentations, a creation of new records (e.g., blocks in a
blockchain) may be directly tied to the creation of new value
because the process of record creation may involve the
issuance of new value as rewards. This mechanism may
ensure new value is introduced into the ecosystem regularly.

A transaction of the bridge class may refer to a transaction
tied to bridge. A bridge may refer to a technology (e.g.,
protocol or service) that enables transfer of value and
interoperability between different networks, e.g., different
transaction logs. Bridges may facilitate the movement of
value from one transaction log to another. For example, a
bridge may facilitate the transfer of Bitcoin to an Ethereum-
based decentralized application (DApp). Bridges may have
other features and/or functionality.

A transaction of the contract class may refer to a trans-
action tied to operations/functions of one or more smart
contracts. A smart contract may be a digital agreement
and/or set of functions. A smart contract may automatically
execute and enforce terms of the agreement when certain
conditions are met. A smart contract may carry out the terms
of an agreement and/or set of functions, with or without
intermediaries. In some implementations, terms may be
carried out through execution of a series of steps. Smart
contracts may be designed to perform a wide range of
transfers and/or functions that are tied to their specific
operating features and/or functionalities. Such transfers may
include one or more of value transfers, value creation,
scheduled and/or conditional transfers, complex financial
operations (e.g., lending, borrowing, staking, yield farming,
etc.), escrow services, multi-signature transactions, gover-
nance and voting, royalty payments, staking, bridges, and/or
other transfers.

A transaction of the contract class may be recorded in a
transaction log with computer programming code of a smart
contract and/or other information indicative of a smart
contract’s involvement (e.g., a reference or pointer to con-
tract code recorded in one or more other transactions and/or
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storage locations). In some implementations, smart contract
code recorded on a transaction log may include one or more
of source code, bytecode, and/or other considerations. The
source code may include the human-readable version written
in a programming language. Bytecode may include a com-
piled, machine-readable format of a smart contract, derived
from the source code. Converting source code to bytecode
may involve a compilation process, where a compiler takes
source code and translates it into bytecode. In some imple-
mentations, bytecode may be recorded on a transaction log,
while source code may not. Some platforms may allow
developers to publish the source code in a transaction log
and/or other public resource for transparency.

In some implementations, many contract classes for trans-
actions may be defined in order to represent many different
types of smart contracts. Different contract classes may
represent different types of smart contracts (e.g., smart
contracts intended to execute different functionality). Fur-
ther, the present disclosure envisions not only classifying
smart contracts executing known functionality, but leaves
open the possibility of identifying and classifying emerging
smart contracts that execute new (e.g., previously unknown
and/or undefined) functionality. The use of specialized
machine learning of the present disclosure makes this pos-
sible.

In some implementations, contract classes (which may be
referred to individually as contract subclasses) may include
one or more of an exchange contract class, a liquidity
contract class, a bridge contract class, a gambling contract
class, a stake contract class, a proxy contract class, an initial
offering contract class, a factory contract class, and/or other
classes.

An exchange contract class of transactions may be asso-
ciated with one or more of function(s) including a swap
function (e.g., “swapTokens( )”); a transaction pattern such
as relatively high frequency of value transfers; contract
parameter values such as pairs of tokens exchanged, slip-
page rates, fees applied, and/or other values; and/or other
information.

A liquidity contract class of transactions may be associ-
ated with one or more of function(s) including value adds
(e.g., “addLiquidity( )”), value removal (e.g., “removeLi-
quidity( )”), and/or other functions; contract parameter val-
ues such as total value locked (TVL), asset rations, liquidity
provider tokens, and/or other values; and/or other informa-
tion.

A bridge contract class of transactions may be associated
with one or more of function(s) including a lock function, a
mint function, and/or other functions; a transaction pattern
including cross-network interactions; contract parameter
values such source and destination network, wrapped token
usage, and/or other values; and/or other information.

A gambling contract class of transactions may be associ-
ated with one or more of function(s) including bet placement
(e.g., “placeBet( )”), winning payouts (e.g., “payoutWin-
nings( )”), and/or other functions; contract parameter values
such as randomness sources, bet amounts, payout structures,
and/or other values; and/or other information.

A stake contract class of transactions may be associated
with one or more of function(s) including stake initiation
(e.g., “stake( )”), stake closure (e.g., “unstake( )”), reward
payouts (e.g., “claimRewards( )”), and/or other functions;
contract parameter values such as staking durations, reward
mechanism, total staked amounts, and/or other values; and/
or other information.

A proxy contract class of transactions may be associated
with one or more of function(s) including delegation (e.g.,

“delegatecall( )”) and/or other functions; contract code with
minimal logic; contract parameter values such as implemen-
tation address, upgrade histories, and/or other values; and/or
other information.

An initial offering contract class of transactions may be
associated with one or more of function(s) including value
sales (e.g., “buyTokens( )”) and/or other functions; contract
parameter values such as sales caps, contribution limits,
vesting schedules, and/or other values; and/or other infor-
mation.

A factory contract class of transactions may be associated
with one or more of function(s) including creation (e.g.,
“createContract( )”) and/or other functions; contract param-
eter values such as quantity of contracts deployed, types of
contract deployed, and/or other values; and/or other infor-
mation.

It is noted that transactions of one or more of the trans-
action classes described herein may implicitly, inherently,
and/or expressly also be part of one or more smart contracts.
This is because a transaction may not only have features that
would lead to a particular transaction classification, but may
also be part of an execution of a smart contract. Such
transactions may have a further classification into one or
more of the contract classes. Accordingly, a classification of
a transaction into one of the transaction classes (e.g., one or
more of a transfer class, a swap class, a stake class, a fee
class, a creation class, and/or other classes) may be accom-
panied by another classification into one or more of the
contract classes. By way of non-limiting illustration, a
bridge class transaction that is part of a bridge process may
be one of the operations of a smart contract for gambling.
Thus, the transaction may be classified in the bridge class, as
well as the gambling contract class. By way of non-limiting
illustration, a stake class transaction that is part of a staking
process may also be one of the operations of a smart contract
executing a series of stakes. Thus, the transaction may be
classified in the stake class, as well as the stake contract
class.

Individual addresses may be classified in individual
address classes. In some implementations, classifications of
addresses may be based on transaction classifications of the
transactions in which the addresses are identified, and/or
other information. By way of non-limiting illustration, an
address of the stake class may be classified as such based on
the address having been identified in one or more stake class
transactions. In some implementations, classifications of
addresses may be based on publicly known classifications.

The address classes may include one or more of a wallet
class, a validator class, a stake class, a bridge class, an
exchange class, one or more contract classes, and/or other
classes. Some of these classes may overlap with some of the
transaction classes.

An address of a wallet class may correspond to a digital
wallet. A digital wallet may refer to an electronic tool (e.g.,
software application) used to manage value and/or other
information. By way of non-limiting illustration, a digital
wallet may store information such as payment credentials,
user details, and/or other information. Payment credentials
may include one or more of banking information, key
information, and/or other information. The key information
may include public and/or private keys. Public keys may be
used to receive funds and/or to verify transactions. Public
keys may be shared with others without compromising
security. Private keys may be used to sign transactions, and
serve as proof the owner has the right to access and/or
initiate transfers of value associated with a public key.
Private keys may remain confidential. Digital wallets may
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use encryption algorithms to protect private keys. An
address of the wallet class may participate in the transfer
class of transactions and/or other classes of transactions.

An address of the validator class may correspond to a
validator (e.g., validator address). A validator may refer to a
participant that checks and confirms transactions and/or
transaction records. A validator may be tasked with ensuring
transactions are valid and that a network operates correctly.
Validators are crucial for maintaining a network’s security
and integrity. Validators may check and confirm that trans-
actions are valid according to the network’s rules. This may
involve ensuring that transactions are correctly signed,
inputs are available, and there are no double-spends. Vali-
dators may provide new transaction records to add to a
transaction log. They may select and bundle valid transac-
tions into a new record, which is then submitted to the
network for approval. Validators may participate in a con-
sensus mechanism to agree on the state of a transaction log.
They help achieve consensus on which transactions and
records are valid. Validators may perform a series of steps in
the execution of their functionality. Validators may perform
other functionality.

An address of a stake class may correspond to a staking
wallet. A staking wallet may participate in a staking process
or similar consensus functionality. A staking wallet may
manage and/or track value that is being used to participate
in a staking process. A staking wallet may ensure value is
securely “held” and/or managed in accordance with a net-
work’s staking rules and/or protocols. Stake class addresses
may be identified in the stake class of transactions.

An address of a bridge class may correspond to a bridge.
A bridge class of address may participate in a bridge process.
Bridge class addresses may be identified in the bridge class
of transactions.

An address of an exchange class may correspond to an
exchange participating in swaps/exchanges of value.
Exchange class of addresses may be identified in the
exchange class of transactions.

An address of a contract class may correspond to a smart
contract (e.g., contract address). An address may correspond
to a smart contract by virtue of one or more of the address
deploying the smart contract, the address being identified in
the smart contract as a source address from which funds are
retrieved and/or received, the address being identified in the
smart contract as a destination address to which funds are
transferred, and/or the address having other characteristics
that conveys a correspondence with a smart contract.

In some implementations, many contract classes for
address may be available in order to represent the many
different types of smart contracts, similar to how transac-
tions are classified. That is, addresses of one or more of the
address classes described herein may implicitly, inherently,
and/or expressly also be identified in one or more smart
contracts, and thus may have a further classification into one
or more of the contract classes, similar to transactions. This
is because an address’s association with a transaction
executing some transaction functionality that would lead to
a particular address classification, may be accompanies by
the address being specifically identified as a source and/or
destination address in accordance with a smart contract.
Accordingly, a classification of an address into one of the
address classes may be accompanied by another classifica-
tion into one of the contract classes. By way of non-limiting
illustration, a bridge class address identified in a transaction
involving a bridge process may also be involved in (e.g.,
identified by) a smart contract intended to execute a series of
operations used for gambling. Thus, the address may be

classified in the bridge class, as well as a gambling contract
class. By way of non-limiting illustration, a stake class
address identified in a transaction involving a staking pro-
cess may be performing the staking process as part of a
smart contract. Thus, the address may be classified in the
stake class, as well as a stake contract class.

In some implementations, a total amount of value asso-
ciated with an address (e.g., “held” by that address) may be
determined by examining the transaction log 150, identify-
ing transactions that identify that address, balancing the
incoming and outgoing transfers of value associated with
that address, determining a total amount of value from the
balancing, and/or other processes. By way of non-limiting
illustration, the total amount of value associated with an
address may be determined by the sum of incoming transfers
of value associated with that address less the sum of out-
going transfers of value associated with that address.

In some implementations, transaction log 150 may be
accessible via a mobile application and/or a website. Tradi-
tionally, a mobile application and/or website may provide a
mechanism to search a transaction log, and/or present the
results of a search in a table format comprising a table of
text. In the context of blockchain, these tools may be
referred to as “block explorers.” Current block explorers are
problematic. They present technical data in textual and/or
table forms, which is not user-friendly for a percentage of
the population that already finds blockchain confusing. The
explorers confuse new users and do not aid in understanding
blockchain concepts, especially concepts around smart con-
tracts, their functionally, and/or how they interact with
addresses.

To address these and/or other problems, one or more
implementations of the system 100 presented herein propose
techniques to train and/or utilize machine learning to clas-
sify smart contracts, and/or generate graphical representa-
tions of transactions such that different smart contracts may
be visually represented. In some implementations, system
100 may include one or more of one or more servers 102,
one or more client computing platforms 104, external
resource(s) 126, immutable distributed electronic storage
media 140, and/or other components. Server(s) 102 may be
configured to communicate with one or more client com-
puting platforms 104, one or more external resources 126,
immutable distributed electronic storage media 140, and/or
other entities of system 100 according to a client/server
architecture and/or other architectures. Client computing
platform(s) 104 may be configured to communicate with
other client computing platforms via server(s) 102 and/or
according to a peer-to-peer architecture and/or other archi-
tectures. Users may access system 100 and/or instances of
the collaboration environment via client computing
platform(s) 104. Server(s) 102 may be remote from client
computing platform(s) 104. Individual client computing
platforms may be remote from other individual client com-
puting platforms. As used herein, a client computing plat-
form may be referred to as a “remotely located” client
computing platform.

External resource(s) 126 may include sources of infor-
mation outside of system 100, external entities participating
with system 100, and/or other resources. By way of non-
limiting illustration, external resource(s) 126 may include
one or more of other storage media storing other transaction
logs, third-party websites and/or information sources storing
characterizations of transactions recorded on transaction log
150 and/or other transaction logs, third-party websites and/
or information sources storing classifications of address
and/or transactions recorded on transaction log 150 and/or
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other transaction logs, and/or other resources. In some

implementations, some or all of the functionality attributed

herein to external resource(s) 126 may be provided by

resource(s) included in system 100.

Server(s) 102 may include one or more of non-transitory

electronic storage 128, one or more processors 130 config-

ured by machine-readable instructions 106, and/or other

components. The non-transitory electronic storage 128 may

store one or more of transaction information, classification

information, model training information, user interface

information, and/or other information. Machine-readable

instructions 106 may include one or more instruction com-

ponents. The instruction components may include computer

program components. Executing the machine-readable

instructions 106 may cause server(s) 102 to facilitate clas-

sifying smart contracts in transactions recorded on transac-

tion log 150 stored in immutable distributed electronic

storage media 140. The computer program components may

include one or more of a transaction component 108, a

classification component 109, a user interface component

110, a model component 111, a query component 112, and/or
other components.

The transaction component 108 may be configured to
obtain transaction information and/or other information. The
transaction information may characterize transactions
recorded on transaction log 150 stored in immutable dis-
tributed electronic storage media 140 and/or other storage
media. The transactions may be characterized in the trans-
action information by transaction feature values of transac-
tion features, and/or other information. In some implemen-
tations, transaction features may include one or more of an
address feature, a timing feature, a value transferred feature,
a fee feature, a function call feature, a contract parameter
feature, a transaction pattern feature, a transaction flow
feature, an interaction feature, and/or other features.

The value(s) of an address feature of a transaction may
include identification of one or more addresses involved in
the transaction (e.g., sender identification, recipient identi-
fication, and/or other information).

The value(s) of a timing feature of a transaction may
include one or more of timestamp when recorded (and/or
timestamp when requested to be recorded), progress char-
acteristics, temporal spikes, and/or other time-based fea-
tures.

The value(s) of a value transferred feature of a transaction
may include characterization(s) of value transferred. The
characterization(s) of value transfer may include one or
more of type(s) of value transferred, amount of value
transferred, amount of value associated with a given
addresses (e.g., a “balance” of value associated with an
address), and/or other information.

The value(s) of a fee feature of a transaction may describe
the transaction fee(s) paid (e.g., type of value, amount of
value, and/or other information) as part of the transaction.

The value(s) of a function call feature of a transaction may
include and/or describe the functions of a smart contract.
Functions may include and/or be related to one or more of
swap functions, bridge function, validation functions, oracle
usage, and/or other functions. The value(s) of a function call
feature may be determined and/or derived from smart con-
tract code.

The value(s) of a contract parameter feature of a trans-
action may include the parameter values of smart contract
parameters of a smart contract. The value(s) of a contract
parameter feature may be determined and/or derived from
smart contract code.

The value(s) of a transaction pattern feature of a transac-
tion may describe transaction patterns of instances of the
transaction. By way of non-limiting illustration, the trans-
action patterns may include one or more of a frequency of
execution of instances of the transaction, a quantity of
instances of execution of the transaction (e.g., a transaction
volume), cross-network interactions (e.g., bridge interac-
tions), and/or other transaction patterns associated with
instances of the transaction. In some implementations, a
transaction frequency feature, a transaction volume feature,
a cross-network feature, and/or other pattern-related features
may be separate and distinct features. The value(s) of a
transaction pattern feature of a given transaction may be
determined from the given transaction and/or a set of
transactions (e.g., other instances of the given transaction).

The value(s) of a transaction flow feature of a transaction
may describe the transaction flow of the transaction.

The value(s) of an interaction feature of a transaction may
describe interaction information. The interaction informa-
tion may convey a transaction’s interaction with various
entities. Interaction may be conveyed by one or more of a
quantity of unique addresses associated with the transaction,
an interaction frequency of the unique addresses, and/or
other information. By way of non-limiting illustration, a
transaction (and/or addresses identified in a transaction) may
be associated with one or more interactions with a decen-
tralized application (dApp) and/or other entities that may
impact, and/or may be impacted by, transactions recorded on
a transaction log.

In some implementations, obtaining transaction informa-
tion may include one or more of retrieving the transaction
information, receiving the transaction information, deriving
the transaction information from other information, and/or
other processes. In some implementations, transaction infor-
mation may be received and/or retrieved directly from
transaction log 150. That is, the transaction information may
comprise the information stored in the transaction log 150
defining the transactions.

In some implementations, obtaining transaction informa-
tion may include one or more of obtaining the information
stored in the transaction log 150, deriving the transaction
information from the information stored in the transaction
log 150, and/or other processes. By way of non-limiting
illustration, the information stored in the transaction log 150
defining the transactions may not directly include the infor-
mation structured in accordance with the transaction features
described herein. Instead, the transaction feature values of
the transaction features of transactions may be derived,
inferred, and/or otherwise determined from information
stored in the transaction log 150 itself. In some implemen-
tations, the transaction information may be obtained from a
source (e.g., an external resource) which has derived the
transaction information from information stored in the trans-
action log 150 and/or from other information sources.

In some implementations, generating transaction feature
values of transaction features of transaction may be accom-
plished through manual labeling of information recorded on
transaction log 150 and/or one or more automated labeling
techniques. Automated labeling techniques may include
automated labeling software. An example of such software
includes Amazon SageMaker Ground Truth. In some imple-
mentations, users may manually verify a representative
sample of an output of automated labeling to ensure accu-
racy. Verification may be used to update the labeling.

In some implementations, transactions may be defined
within individual records of transaction log 150 without
some of the information described, for example without

US 12,260,309 B1

13 14

5

10

15

20

25

30

35

40

45

50

55

60

65



specifically including transaction flow, transaction patterns,

and/or other information as described herein. Instead, trans-

action component 108 may be configured to derive transac-

tion information from information that is stored in an

individual transaction record and/or other information. By

way of non-limiting illustration, information such as sender

identification (e.g., sender addresses), recipient identifica-

tion (e.g., recipient addresses), value transferred, and/or

other information stored in transaction log 150 for one or

more transactions may be used to derive a transaction flow

for an individual transaction. By way of non-limiting illus-

tration, transaction component 108 may be configured to

determine that an address identified as a recipient address

should have a designation of being associated with an

“incoming” transfer of value by virtue of its “recipient”

characterization within the transaction log 150 itself. By

way of non-limiting illustration, transaction component 108

may be configured to determine that an address identified as

a sender address should have a designation of being asso-

ciated with an “outgoing” transfer of value by virtue of its

“sender” characterization within the transaction log 150
itself. By way of non-limiting illustration, transaction com-
ponent 108 may be configured to derive, infer, and/or
otherwise determine transaction information in other ways
from one or more information sources.
Model Training

The system 100 may implement one or more models to
classify smart contracts and/or perform other classification.
In some implementations, a model may comprise one or
more of a machine learning model, a probabilistic model, a
decision tree model, and/or other models. In some imple-
mentations, different models may be utilized at different
stages of the system 100.

In some implementations, a model may utilize one or
more of an artificial neural network, naı̈ve Bayes classifier
algorithm, k-means clustering algorithm, support vector
machine algorithm, linear regression, logistic regression,
decision tree-based model, random forest, nearest neighbors,
matrix factorization (e.g., a class of a class of collaborative
filtering algorithms), a classifier, a histogram, Retrieval-
Augmented Generation (RAG), natural language process-
ing, and/or other approaches. Training a model may utilize
one or more of deep learning, supervised learning, semi-
supervised learning, unsupervised learning, reinforcement
learning, low-code techniques, and/or other techniques.

In supervised learning, a model may be provided with a
known training dataset that includes desired inputs (e.g.,
transaction information) and outputs (e.g., classification
information), and the model may be configured to find a
method to determine how to arrive at those outputs based on
the inputs. The model may identify patterns in information,
learn from observations, and/or make predictions. The
model may make predictions and may be corrected by an
operator—this process may continue until the model
achieves a desired level of accuracy/performance. Super-
vised learning may utilize approaches including one or more
of classification, regression, forecasting, and/or other
approaches.

Semi-supervised learning may be similar to supervised
learning, but instead uses both labelled and unlabeled train-
ing information. Labelled data may comprise information
that has meaningful tags (or “labels”), so that the model can
understand the information (e.g., model training information
as described herein), while unlabeled information may lack
those specific tags. By using this combination, the machine
learning model may learn to label unlabeled data.

For unsupervised learning, a model may study model

training information to identify patterns. There may be no

answer key or human operator to provide instruction.

Instead, the model may determine the correlations and

relationships by analyzing training information. In an unsu-

pervised learning process, the model may be left to interpret

large information sets and address the training information

accordingly. The model may try to organize training infor-

mation in some way to describe its structure. This might

mean grouping training information into clusters or arrang-

ing it in a way that looks more organized. Unsupervised

learning may use techniques such as clustering and/or

dimension reduction.

Reinforcement learning may focus on regimented learn-

ing processes, where the machine learning model may be

provided with a set of actions, parameters, and/or end values

(e.g., classification information). By defining the rules, the

model then tries to explore different options and possibili-

ties, monitoring and evaluating individual results to deter-

mine which one is optimal to generate correspondences.

Reinforcement learning teaches the model trial and error.
The model may learn from past experiences and adapt its
approach in response to the situation to achieve the best
possible result.

Machine learning models may operate by generating
inferences, e.g., conclusions drawn about unseen or unmen-
tioned information from learned knowledge. Generating
inferences may refer to a process of making predictions,
deductions, and/or conclusions based on patterns and/or
relationships learned by a model. Inferences are a powerful
aspect of machine learning, enabling models to reason, make
connections, and/or provide insightful responses.

The process of generating inferences may involve using
patterns and/or relationships learned from large amounts of
information. Inference generating processes may rely on a
model’s ability to store information about concepts and/or
relationships in its internal representations (e.g., knowledge
encoding), identify similarities and/or connections between
pieces of text, concepts, and/or entities (e.g., pattern recog-
nition), apply learned patterns and/or relationships to new,
unseen situations (e.g., generalize), and/or draw logical
conclusions from encoded knowledge and/or recognized
patterns (e.g., reason). In some implementations, inferences
may be one or more of explicit, implicit, abductive, and/or
deductive. Explicit inferences may be direct conclusions that
may include specific pieces of information. Implicit infer-
ences may be suggested and/or implied conclusions. Abduc-
tive inferences may be educated guesses or hypotheses
based on incomplete information. Deductive inferences may
be conclusions drawn with certainty, using logical rules and
evidence.

The model component 111 may be configured to provide
model training information to a model to train, retrain,
fine-tune, adapt, and/or otherwise prepare the model for use.
By virtue of current technology surrounding machine learn-
ing, the act of providing the model training information to a
model may cause the model to be trained to thereby generate
a trained model. The trained model may be trained to
generate certain output as described herein.

In some implementations, model component 111 may be
configured to organize model training information into
input/output training information pairs used to train a model.
Training may be accomplished by providing that informa-
tion during a training (and/or retraining, refining, and/or
adapting) phase of that model. An individual input/output
training information pair may include individual input train-
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ing information (e.g., sample of inputs), individual output
training information (e.g., sample of desired outputs), and/or
other information.

One or more of models used by system 100 may be
continually refined (or “fine-tuned”) as time goes on. In
some implementations, a model may be continually refined
as information is collected and/or model parameters are
adjusted manually or in response to some trigger event.

Fine-tuning a trained model process may include one or
more of preparation, model selection, training, evaluation,
and/or other operations. A preparation step may prepare a set
of labeled training information examples in a specific format
(e.g., CSV, JSON). The model selection step may choose a
pre-trained model and select a fine-tuning method. The
training step may train the pre-trained model on the prepared
set of labeled training information examples, updating
weights based on error between predictions and actual
labels. An evaluation step may evaluate a model’s perfor-
mance on a validation set, and adjust parameters as needed.

In some implementations, a model may draw from one or
more information sources to perform one or more opera-
tions. These information sources may include natural lan-
guage sources (e.g., sources of text in prose), embeddings,
and/or other information sources.

An embedding may comprise a mathematical representa-
tion of a word, a character, and/or phrase as a vector in a
high-dimensional space. A vector may denote semantic
meaning and/or relationships of a word, a character, and/or
phrase allowing a model to perform its tasks. A collection of
embeddings may be generated for a set of information. The
collection of embeddings may make up an embeddings
database.

Embeddings may allow models to understand and process
information more effectively. The process of embedding
information may map data points to a vector space, where
individual dimensions represent individual features and/or
attributes. This space may allow for mathematical opera-
tions and comparisons between data points. Embeddings
may form distributed representations, meaning that infor-
mation may be spread across multiple dimensions, rather
than being localized to a single dimension. Embeddings may
denote semantic meaning of points in the vector space, like
the relationships between words or images, by measuring
similarity and distance between points, using metrics like
cosine similarity or Euclidean distance. Embeddings may
reduce the dimensionality of high-dimensional data, making
it more tractable for models to process.

Embeddings may enable a model to process text as
numerical inputs, capture subtle semantic relationships,
facilitate generalization to unseen information, and/or per-
form other processes such as classification, clustering, and/
or generation. The general process of generating embed-
dings may include one or more of collecting input
information, tokenizing the input information, implementing
an embedding generation technique, extracting embeddings,
and/or other operations. In some implementations, one or
more implementations of model training information
described herein may be refer to a vector space representa-
tion of the model training information within an embeddings
database.

Tokenizing may include splitting text into individual
tokens, e.g., text may be broken down into individual tokens,
such as words, subwords, and/or characters. Each token may
be represented as a vector in a high-dimensional space (e.g.,
100-1000 dimensions). Individual vector values of indi-
vidual vectors may represent an individual token’s semantic
features. The semantic features may include one or more of

meaning, context, relationships with other tokens, syntactic
roles, grammatical roles, and/or other features. In some
implementations, use of a high-dimensional vector space
may result in tokens with similar meanings or contexts being
mapped to nearby points in the vector space, enabling a
model to capture nuances in language. In some implemen-
tations, a model may be configured to learn to adjust
embedding vectors during training to refine an understand-
ing of the tokens and/or their relationships.

Implementing an embedding generation technique may
include one or more of choosing an embedding generation
technique and/or pre-trained model (e.g., model selection),
training the model on prepared data, and/or other steps.
Embedding generation techniques may include one or more
of word embeddings (e.g., Word2Vec, GloVe) that may
represent words as vectors, character embeddings that may
represent individual characters as vectors, subword embed-
dings that may represent subwords (parts of words) as
vectors, and/or other techniques. Pre-trained models may
include one or more of Bidirectional Encoder Representa-
tions from Transformers (BERT), Robustly Optimized
BERT Approach (ROBERTa), XLNet, and/or other embed-
ding techniques.

In some implementations, model component 111 may be
configured to store a model in the non-transitory electronic
storage 128 and/or other storage locations.

In some implementations, model component 111 may be
configured to access one or more models through a distrib-
uted network of models. Accessing a model may refer to a
process of interacting with a model and/or utilizing a mod-
el’s capabilities remotely through a network connection.
There are several ways to access model(s) in a distributed
network, including one or more of API Calls (e.g., send
requests to a server hosting a model, and receive responses
through APIs), Remote Procedure Calls (RPC) (e.g., invok-
ing model methods or functions remotely, as if the model
were a local application), Message Passing (e.g., send mes-
sages to a server hosting a model, and receive responses
through message queues or brokers), and/or other methods
for providing prompts, receiving inferences, and/or other-
wise communicating with one or more models.

Distributed networks of models may refer to a design
where multiple models are trained and/or deployed across a
network of devices, or “nodes,” working together to achieve
a common goal. Distributed networks provide many advan-
tages. These include, among other, scalability to handle
larger datasets and more complex models by distributing the
computational workload, flexibility by allowing for the
integration of different models and architectures, ability to
continue functioning even if some nodes fail, leveraging
diverse sets of information and models to enhance overall
performance and/or generalization, reducing the risk of a
single point of failure, and/or speeding up training times by
parallelizing computations across nodes. Some examples of
distributed networks include PyTorch Distributed, Tensor-
Flow Distributed, Apache MXNet, and Hugging Face Trans-
formers.

With respect to training, a distributed network may split
training information across multiple nodes, where each node
may train a replica of a given model. Nodes may train locally
and share model updates with a central server. In some
implementations, a model may be split across multiple
nodes, and each node may train a portion of the model. In
some implementations, nodes may share relevant informa-
tion, reducing communication overhead.

When generating interferences, input may be split across
multiple nodes, and individual nodes may generate infer-
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ences on its portion. In some implementations, a model may
be split into stages across nodes, and individual nodes may
individually perform one or more stages in the process of
generating an inference. By way of non-limiting illustration,
a retrieval step may be performed at one node, an augmen-
tation step may be performed at another node, and a gen-
eration step may be performed at yet another node.

In some implementations, as part of training of a machine
learning model and preparing model training information,
transaction component 108 may be configured to obtain
transaction information characterizing a set of transactions.
By way of non-limiting illustration, the transaction infor-
mation may include first transaction information which
characterizes a first transaction and/or other transactions.

In some implementations, classification component 109
may be configured to obtain classification information iden-
tifying known contract classes of the transactions in the set
of transactions. Individual transactions may be classified in
individual contract classes. By way of non-limiting illustra-
tion, the classification information may include first classi-
fication information which identifies a first contract class for
the first transaction. In some implementations, classification
information obtained and used for training may leverage an
existing dataset of known and/or verified contracts. By way
of non-limiting illustration, one or more public resources
may provide access to the code of known smart contracts, in
the hundreds of thousands.

The model component 111 may be configured to generate
model training information. The model training information
may include one or more of transaction information, clas-
sification information, and/or other information. The model
training component 111 may be configured to aggregate one
or more of transaction information, classification informa-
tion, and/or other information into the model training infor-
mation. The model training information may be information
suitable for training a machine learning model for the
purposes described herein (e.g., may be a vector space
representation). By way of non-limiting illustration, the
model component 111 may be configured to provide the
model training information and/or other information to a
machine learning model to train the machine learning
model. Training the machine learning model may generate a
trained machine learning model. The trained machine learn-
ing model may be configured to generate output comprising
contract classes of new transactions, and/or other informa-
tion. “New” transactions may refer to transactions newly
recorded to the transaction log 150 after the model has been
trained and/or transactions that existed prior to the training
but not used as part of the training (e.g., not included in the
set of transaction).

In some implementations, the transaction information
included in the model training information may include one
or more transaction feature values of one or more transaction
features of the transactions in the set of transaction used for
training purposes. In particular, aggregating transaction
information and classification information into the model
training information may include generating correspondence
information and/or other information. The model training
information may include the correspondence information.
The correspondence information may define correspon-
dences between transaction feature values of the transactions
in the set of transactions and the known contract classes of
the transactions. In other words, the correspondence infor-
mation may form a robust set of labeled training data, e.g.,
where sets of transaction feature values from the set of
transactions may be labeled with corresponding contract
classes.

By way of non-limiting illustration, correspondence infor-
mation may include one or more of a first correspondence
between a first set of transaction feature values of a first set
of the transactions and the exchange contract class, a second
correspondence between a second set of transaction feature
values of a second set of the transactions and the liquidity
contract class, a third correspondence between a third set of
transaction feature values of a third set of the transactions
and the bridge contract class, a fourth correspondence
between a fourth set of transaction feature values of a fourth
set of the transactions and the gambling contract class, a fifth
correspondence between a fifth set of transaction feature
values of a fifth set of the transactions and the stake contract
class, a sixth correspondence between a sixth set of trans-
action feature values of a sixth set of the transactions and the
proxy contract class, a seventh correspondence between a
seventh set of transaction feature values of a seventh set of
the transactions and the initial offering contract class, an
eighth correspondence between an eighth set of transaction
feature values of an eighth set of the transactions and the
factory contract class, and/or other correspondences.

The first set of transaction feature values corresponding to
the exchange contract class may include one or more of
swap functions, relatively high frequency of value transfers,
pairs of values being exchanged, exchanged-based fees,
and/or other feature values.

The second set of transaction feature values correspond-
ing to the liquidity contract class may include one or more
of liquidity functions, locked value, liquidity-specific value,
and/or other feature values.

The third set of transaction feature values corresponding
to the bridge contract class may include one or more of
bridge functions, identification of source and destination
networks, bridge-specific value, and/or other feature values.

The fourth set of transaction feature values corresponding
to the gambling contract class may include one or more of
gambling functions, randomness sources, payout structures,
and/or other feature values.

The fifth set of transaction feature values corresponding to
the stake contract class may include one or more of staking
functions, staking durations, staking amounts, reward
mechanisms, and/or other feature values.

The sixth set of transaction feature values corresponding
to the proxy contract class may include one or more of
delegation functions, minimal logic function, upgrade his-
tories, and/or other feature values.

The seventh set of transaction feature values correspond-
ing to the initial offering contract class may include one or
more of sale functions, sale caps, contribution limits, vesting
schedules, and/or other feature values.

The eighth set of transaction feature values corresponding
to the factory contract class may include one or more of
deployment functions, identification of other contracts
deployed, and/or other feature values.

In some implementations, generating correspondence
information may be accomplished through manual labeling
and/or one or more automated labeling techniques. In some
implementations, users may manually verify a representa-
tive sample of an output of automated labeling to ensure
accuracy.

The model component 111 may be configured to provide
the model training information and/or other information to a
model to train, retrain, refine, and/or adapt the model. By
virtue of current technology surrounding machine learning,
the act of providing the model training information to a
model may cause the model to be trained to thereby generate
a trained model.
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One or more models used by system 100 may be con-
tinually refined as time goes on. By way of non-limiting
illustration, transaction information, correspondence infor-
mation, and/or other information may be continuously
updated as smart contracts are deployed, transactions are
recorded, and/or users interact with transactions in transac-
tion log 150. Updated information may be provided back
into the trained model to further refine and/or retrain it.

In some implementations, a model may be continually
refined for specific contract classes. By way of non-limiting
illustration, as more public information is made available
about known smart contracts, additional examples of con-
tract classes and labeled transaction feature values may be
provided for further fine tuning. Further, in some implemen-
tations, users may manually verify and/or correct output of
the trained machine learning model, which may act as
another mechanism to refine the model.
Model Utilization and Classification

Referring now to the utilization of a trained machine
learning model, the transaction component 108 may be
configured to obtain transaction information characterizing
new transactions recorded on transaction log 150 stored in
immutable distributed electronic storage 140. By way of
non-limiting illustration, the transaction information may
include first new transaction information which character-
izes a second transaction. The second transaction may
identify an address and/or other addresses. The first new
transaction information may include a set of transaction
features values for transaction features of the second trans-
action, and/or other information.

The model component 111 may be configured to provide
the transaction information characterizing individual ones of
the new transactions as input into a trained machine learning
model. By way of non-limiting illustration, the first new
transaction information and/or other information for other
transactions may be provided as input into the trained
machine learning model.

The classification component 109 may be configured to
obtain the output from the trained machine learning model
and/or perform other operations.

The classification component 109 may be configured to
generate, from the output and/or other information, new
classification information. The new classification informa-
tion may include one or more of new transaction classifi-
cation information, new address classification information,
and/or other information. The new transaction classification
information may include the contract classes of the new
transactions and/or other classifications. By way of non-
limiting illustration, the new classification information may
include first new classification information which identifies
the first contract class of the second transaction based on the
output of the trained machine learning model.

The classification component 109 may be configured to
generate the new address classification information speci-
fying contract classes of address identified in the new
transactions. The addresses may be classified in individual
contract classes of the individual transactions in which they
are identified. The addresses may be classified in individual
contract classes in other ways. By way of non-limiting
illustration, the first new classification information may
include first new classification information which identifies
the first contract class for the first address by virtue of the
first contract class of the second transaction.

In some implementations, second new transaction infor-
mation may characterize a third transaction. The third trans-
action may identify a second address and/or other address.
The second new transaction information may be provided as

input into the trained machine learning model. Second new
classification information may be generated from the output
of the trained machine learning model. The second new
classification information may include one or more of iden-
tification of a second contract class of the third transaction,
identification of the second contract class of the second
address, and/or other information.

It is noted that while the machine learning model is
described herein as providing a basis for classification into
contract classes, it is to be understood that other transaction
classes (e.g., non-smart contract classes) and/or address
classes may also be determined using on the model, and/or
through other techniques.

By way of non-limiting illustration, individual transaction
classes of individual transactions may be determined from
individual sets of transaction information characterizing one
or more transactions, and/or other information. An indi-
vidual set of transaction information characterizing one or
more transactions may be indicative of an individual trans-
action class of an individual transaction. In some implemen-
tations, transaction classes may or may not be explicitly
recorded as a distinct attribute in a transaction record. In
some implementations, the class of a transaction may be
inferred from information recorded on a transaction record
and/or information derived from a transaction record.

In some implementations, classification component 109
may utilize and/or reference transaction-class mapping
information (stored in electronic storage 128 and/or other
storage location) including individual mappings between
individual sets of transaction information and individual
transaction classes. By way of non-limiting illustration,
transaction-class mapping information may include one or
more of a mapping between a set of transaction information
and the transfer class of transactions, a mapping between a
set of transaction information and the swap class of trans-
actions, a mapping between a set of transaction information
and the stake class of transactions, a mapping between a set
of transaction information and the fee class of transactions,
a mapping between a set of transaction information and the
creation class of transactions, and/or other mappings. By
way of non-limiting illustration, transaction information
indicative of the transfer class may have a basic structure of
moving value from one address to another. By way of
non-limiting illustration, transfer class transactions may be
recorded as a transfer of value of a given type from one
address to another.

In some implementations, individual address classes of
individual addresses may be determined from individual sets
of transaction information characterizing one or more trans-
actions involving the individual addresses, and/or other
information. An individual set of transaction information
characterizing one or more transactions may be indicative of
an individual address class of an individual address. In some
implementations, a set of transaction information character-
izing one or more transactions involving an individual
address may indicate a behavior of the individual address
over the one or more transactions. The behavior and/or other
information may provide insight into the address class of the
address.

By way of non-limiting illustration, to classify an indi-
vidual address, classification component 109 may obtain
transaction information characterizing one or more transac-
tions involving the individual address. In some implemen-
tations, address classes may or may not be explicitly
recorded as a distinct attribute of a given transaction record.
In some implementations, the class of an address may be
inferred from information recorded on one or more trans-
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action records and/or information derived from the one or

more transaction records. That is, a transaction log 150 may

or may not directly encode or label the class of an address

in recorded information, but instead may be inferred based

on one or more of behavior, transaction patterns, known

roles, and/or other information.

In some implementations, classification component 109

may utilize and/or reference address-class mapping infor-

mation (stored in electronic storage 128 and/or other storage

location) including individual mappings between individual

sets of transaction information and individual address

classes. By way of non-limiting illustration, address-class

mapping information may include one or more of a mapping

between a set of transaction information and a wallet class

of address, a mapping between a set of transaction infor-

mation and a contract class of address, a mapping between

a set of transaction information and a validator class of

address, a mapping between a set of transaction information

and a stake class of address, a mapping between a set of

transaction information and a bridge class of address, and/or

mappings. By way of non-limiting illustration, transaction
information indicative of the wallet class may include one or
more of frequency of transactions, amount of transactions,
amount of value transferred per transaction, and/or other
information. By way of non-limiting illustration, transfers
involving digital wallets may generally have varied activity
patterns, such as occasional transactions and/or personal
(e.g., relatively low value) spending. The transactions from
wallet addresses may be often less frequent compared to
exchanges, smart contracts, and/or other addresses. Wallet
addresses may not follow predictable patterns, and/or may
interact with other addresses in a specific way.
Graphical Representations

In some implementations, user interface component 110
may be configured to manage information defining a graph
and/or individual portions of the graph through which the
transactions are visually represented. The graph and/or indi-
vidual portions of the graph may provide visualizations of
transactions. Managing information may include one or
more of determining, obtaining, receiving, requesting,
checking, storing, modifying, and/or other operations. Man-
aging information defining a graph and/or individual por-
tions of the graph may include generating user interface
information and/or other processes.

The user interface component 110 may be configured to
effectuate presentation of instances of a graphical user
interface on client computing platform(s) 104 of the users.
The user interface may provide one or more views of a graph
and/or individual graph portions, and/or provide other fea-
tures and/or functionality. In some implementations, an
individual view may include textual and/or graphical dis-
plays. The user interface may include one or more user
interface elements configured to facilitate user interaction
with the user interface. By way of non-limiting illustration,
user interface elements may include one or more of text
input fields, drop-down menus, check boxes, display win-
dows, selectable user interface elements (e.g., virtual but-
tons, icons, and/or other elements), graphics, panes, and/or
other elements.

Effectuating presentation of a graphical user interface
may include one or more of generating user interface
information defining the user interface, communicating the
user interface information to client computing platform(s)
104 over network(s) 116, and/or other operations. Individual
client computing platform(s) 104 may receive the user
interface information and/or other information. Receipt of

the user interface information may cause the client comput-
ing platform(s) 104 to present instances of the user interface.

The user interface component 110 may be configured to
establish one or more network connections between
server(s) 102 and client computing platform(s) 104 associ-
ated with users.

The user interface component 110 may be configured to
generate user interface information defining instances of a
graphical user interface through which the transactions are
represented as a graph and/or in other ways. By way of
non-limiting illustration, the graphical user interface may
display, within a field of two or more dimensions, at least a
graph portion of the graph. The graph may be comprised of
one or more of graph nodes, graph edges between graph
nodes, and/or other content.

The graph nodes within the graph may represent the
addresses. Individual graph nodes may be presented within
individual visual characteristics assigned to the individual
addresses based on individual address classifications. In
some implementations, a graph node may have one or more
particularly assigned visual characteristic in order to visually
convey an address class and/or a contract subclass. That is,
an individual graph node representing an address that has an
address classification and an additional (and/or inherent)
contract classification may include a visual characteristic
that represents the address class, and another visual charac-
teristic that represents on the contract class.

The graph edges between the graph nodes may represent
transaction flow. The individual graph edges may be pre-
sented within individual visual characteristics assigned to
the individual transactions based on individual transaction
classifications.

In some implementations, the user interface component
110 may be configured to assign one or more visual char-
acteristic to individual addresses and/or individual transac-
tion. In some implementations, the user interface component
110 may be configured to obtain individual visual charac-
teristic assignments previously assigned to individual
addresses and/or individual transactions. In some implemen-
tations, assignment of an individual visual characteristic
may generate an association with the individual visual
characteristic so that presentation of a graph node represent-
ing an address and/or graph edge representing a transaction
flow, as the case may be, may lead to presentation of the
graph node and/or graph edge with an associated individual
visual characteristic.

Visual characteristics may include one or more of shape,
size, color, fill pattern, and/or other visual characteristics. By
way of non-limiting illustration, shapes may include one or
more of circle, square, diamond, triangle, octagon, line,
arrowhead, and/or other shapes. In some implementations,
size may be a relative characteristic. A fill pattern may
include a line pattern and/or other pattern that fills in a given
shape, e.g., is within an outline of a shape. By way of
non-limiting illustration, fill patterns may include one or
more of hash marks, dots, horizontal lines, vertical lines,
diagonal lines, and/or other patterns.

By way of non-limiting illustration, a graph node may
comprise a circle shape having a diameter of one unit of
measurement, while another graph node may comprise a
circle shape having a diameter of two units of measurement.

In some implementations, lines may be visually distin-
guished by line types. An individual line type may have a
unique and distinguishable visualization. By way of non-
limiting illustration, line types may include one or more of
a thin line, a thick line, a double line, a dotted line, a triple
line, a jagged line, and/or other line types.
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By way of non-limiting illustration, a visual characteristic
of a graph edge may include a line shape having an arrow
pointing in a direction of a transaction flow (e.g., from
sender/source graph node and to recipient/destination graph
node). The user interface component 110 may be configured
to cause the graph nodes to be displayed with visual char-
acteristics assigned to addresses, and the graph edges to be
displayed with visual characteristics assigned to transac-
tions.

The user interface component 110 may be configured to
assign one or more visual characteristics to individual
addresses based on the individual address classes and/or
other information. In some implementations, addresses of
the same address class may be assigned the same one or
more visual characteristics. The same visual characteristic(s)
assigned to addresses of the same class may be one or more
of shape, color, and/or other visual characteristics. Accord-
ingly, one or more visual characteristics may provide an
immediate visual differentiation between addresses of dif-
ferent address classes and/or transactions of different trans-
action classes.

By way of non-limiting illustration, a wallet class may be
associated with a first shape and/or other visual character-
istic, a validator class may be associated with a second shape
and/or other visual characteristic, a stake class may be
associated with a third shape and/or other visual character-
istic, a bridge class may be associated with a fourth shape
and/or other visual characteristic, an exchange class may be
associated with a fifth shape and/or other visual character-
istic, a contract class may be associated with an sixth shape
and/or other visual characteristic, and/or other address
classes may be associated with other shapes.

The user interface component 110 may be configured to
assign one or more visual characteristics to individual trans-
actions based on the individual transaction classes and/or
other information. In some implementations, transactions of
the same transaction class may be assigned the same one or
more visual characteristics. The same visual characteristic(s)
assigned to transactions of the same class may be line type,
color, and/or other visual characteristics.

By way of non-limiting illustration, transfer class may be
associated with a first line type and/or other visual charac-
teristic, swap class may be associated with a second line type
and/or other visual characteristic, stake class may be asso-
ciated with a third line type and/or other visual character-
istic, fee class may be associated with a fourth line type
and/or other visual characteristic, creation class may be
associated with a fifth line type and/or other visual charac-
teristic, an contract class may be associated with a sixth line
type and/or other visual characteristic, and/or other transac-
tion classes may be associated with other visual character-
istics.

By way of non-limiting illustration, the first address may
be assigned a first visual characteristic based on classifica-
tion in the first contract class, and the second address may
be assigned a second visual characteristic based on classi-
fication in the second contract class. In some implementa-
tions, the first visual characteristic may be a first shape and
the second visual characteristic may be a second shape. In
some implementations, the first visual characteristic may be
a first color and the second visual characteristic may be a
second color. In some implementations, the first visual
characteristic may be a fill pattern, and the second visual
characteristic may be a shape.

In some implementations, the graphical user interface
may include one or more portions. The portions may include
one or more of a graph display portion that displays a graph

and/or individual graph portions of the graph, an on-demand
display portion, a table display portion that displays text
representations of a transaction, and/or other portions.

An on-demand display portion may be configured to
display one or more of address-specific information, trans-
action flow-specific information, and/or other information.
The on-demand display portion may present information in
response to user input requesting display within that portion.
By way of non-limiting illustration, individual graph nodes
and/or individual graph edges may comprise selectable user
interface elements. Selection of an individual graph node
(representing an individual address) and/or an individual
graph edge (representing an individual transaction flow)
may cause corresponding address-specific information (spe-
cific to the individual address) and/or transaction-flow spe-
cific information (specific to the individual transaction flow)
to be presented within the on-demand display portion.

The address-specific information, transaction flow-spe-
cific information, and/or other information presented within
on-demand display portion may include information from
transaction information obtained by transaction component
108, and/or information obtained from one or more other
information sources.

By way of non-limiting illustration, address-specific
information associated with an individual address may
include one or more of an amount of value associated with
the individual address (e.g., the individual address’s bal-
ance), a date when the individual address was created,
identification of one or more other addresses associated with
the individual address, identification of one or more address
classes of the individual address, smart contract code asso-
ciated with an address, and/or other information.

By way of non-limiting illustration, transaction flow-
specific information associated with an individual transac-
tion flow of an individual transaction may include one or
more of identification of addresses associated with the
individual transaction, indication of individual addresses as
sender and/or recipient, a characterization of value trans-
ferred in the individual transaction, a fee associated with the
individual transaction, timestamp for when the individual
transaction was requested and/or executed, identification of
one or more transaction classes of the individual transaction,
smart contract code associated with an transaction, and/or
other information. In some implementations, value trans-
ferred in the individual transaction may be characterized by
one or more of value type, amount, and/or other character-
izations.

In some implementations, a display of a graph and/or
graph portion may be characterized by one or more of an
address-centric display, a transaction-centric display, a
cross-network display, and/or other characteristics. An
address-centric display may include a display which empha-
sizes and/or otherwise makes prominent one or more
addresses. Emphasizing and/or making prominent may
include, for example, positioning a graph node in a centered
position (or substantially centered position) within the user
interface so as to draw a user’s attention to the graph node
as a principal reason for the display. A transaction-centric
display may include a display which emphasizes and/or
otherwise makes prominent a transaction (and/or transaction
flow). Emphasizing and/or making prominent may include,
for example, positioning a graph edge in a centered position
(or substantially centered position) within the user interface
so as to draw a user’s attention to the graph edge as a
principal reason for the display.

In some implementations, a cross-network display may
correspond to a configuration of a graph display portion of
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a user interface that is specific to presenting transaction(s)
involving more than one network (and/or more than one
transaction log). Such transactions may include one or more
of swap transactions, smart contract transactions, transac-
tions involving bridge class address(es), and/or other trans-
actions. A cross-network display may include one or more
visual characteristics to visually differentiate between dif-
ferent networks involved in a transfer of value (e.g., move-
ment of value from one transaction log to another). In some
implementations, visual characteristic(s) that visually dif-
ferentiate between different networks may include one or
more of a demarcation line, color contrast, and/or other
visual characteristics.

By way of non-limiting illustration, a demarcation line
may be provided in a graph display portion to differentiate
between addresses that are part of different networks. A
demarcation line may be centered within the graph display
portion and/or positioned in other ways. A graph node
representing an address of one network may be positioned
on one side of a demarcation line, and a graph node
representing an address of another network may be posi-
tioned on another side of the demarcation line. In some
implementations, a graph edge presenting a transaction flow
may cross a demarcation line, indicating a transfer between
networks. For bridge class address(es), a graph node repre-
senting a bridge class address may be positioned on the
demarcation line (e.g., straddling the line). In some imple-
mentations, multiple demarcation lines may be provided to
differentiate between additional networks. By way of non-
limiting illustration, a graph display portion may be divided
into two or more sections using one or more demarcation
lines.

By way of non-limiting illustration, color contrast may be
provided in a graph display portion to differentiate between
addresses that are part of different networks. The graph
display portion may be divided into two or more sections,
with individual sections having an individual color, and with
different colors representing different networks. A graph
node representing an address of one network may be posi-
tioned in a section of a given color, another graph node
representing another address of another network may be
positioned in a section of another given color, etc. In some
implementations, a graph edge presenting a transaction flow
may extend between an intersection of colors, indicating a
transfer between networks. A graph node representing a
bridge class address may be positioned at an intersection of
two or more colors (e.g., straddling the intersection).

The user interface component 110 may be configured to
effectuate communication of the user interface information
to client computing platform(s) 104 associated with the
user(s) to cause client computing platform(s) 104 to present
instance(s) of the graphical user interface.

By way of non-limiting illustration, user interface infor-
mation may define a first instance of the graphical user
interface through which the second transaction is repre-
sented in a first graph portion of the graph. The first instance
of the graphical user interface may display a first graph node
representing the first address and/or other graph content. The
user interface information defining the first instance of the
graphical user interface may be communicated to a first
remotely located client computing platform over a first
network connection to cause the first remotely located client
computing platform to display the first graph portion includ-
ing the first graph node presented with the first visual
characteristic assigned thereto.

Based on the features and/or functions herein, an
improved user interface is provided, which makes informa-

tion underlying a transaction log more understandable
through specialized visualization driven by sophisticated
machine learning. One or more implementations of the user
interface may eliminate the need to decipher complex strings
of characters and/or smart contract code to gain insights.
Different classes of transactions may be represented differ-
ently so as to visually distinguish between the different
classes of transactions. Different classes of addresses may be
represented differently so as to visually distinguish between
the different classes of addresses. Addresses and/or transac-
tions may be presented predominately within a display to
draw focus to a user’s search and the insights they wish to
gain. Other features and/or functions described herein may
also contribute to improvements intended by the inventor(s)
and/or improvements that may become apparent to a person
having ordinary skill in the art.

In some implementations, instances of the user interface
may be configured to receive user input at the client com-
puting platform(s) 104. The user input may include one or
more of selection of individual user interface elements, text
entry, and/or other input. By way of non-limiting illustration,
individual graph nodes, individual graph edges, and/or other
content of user interface may be selectable to effectuate one
or more actions.

The user interface component 110 may be configured to
obtain and/or generate user input information conveying
user input within the instances of the user interface at the
client computing platform(s) 104. By way of non-limiting
illustration, the user input information may convey user
input including selection of individual graph nodes, selec-
tion of the individual graph edges, selection from drop-down
menus, selection of virtual buttons or icons, and/or other
selection of other user-selectable content displayed in the
instances of the graphical user interface.

In some implementations, the user input information may
be stored in non-transitory electronic storage 128 and/or
other storage locations. In some implementations, interac-
tions at the client computing platform(s) 104 comprising
user input may be communicated to user interface compo-
nent 110 such that user interface component 110 may
generate the user input information. In some implementa-
tions, individual client computing platforms may generate
the user input information based on the user entry and/or
selection at the client computing platform(s) 104 and com-
municate the user input information to the user interface
component 110.

The user interface component 110 may be configured to,
responsive to obtaining user input information, cause the
instances of the graphical user interface to display one or
more of address-specific information, transaction flow-spe-
cific information, and/or other information. The user inter-
face component 110 may be configured to, responsive to
obtaining user input information, perform one or more other
actions. The one or more other actions may include, for
example, one or more of displaying a pop-up window,
displaying a drop-down menu, navigating to another view,
and/or other actions.

In some implementations, a user interface may include
one or more user interface elements through which users
submit search terms and/or queries. Submission may be
accomplished through one or more of text input, selection of
a check box, and/or other interactions. By way of non-
limiting illustration, the user interface may include a user
interface element comprising a text input box through which
users submit search terms and/or queries.

In some implementations, a search term and/or query may
include one or more of a part or a whole of an address’s
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identification (e.g., a unique identifier such as a string of
alphanumeric character), a part or a whole of a transaction’s
identification (e.g., a unique identifier such as a string of
alphanumeric character), and/or other information.

The query component 112 may be configured to obtain
user-submitted search terms and/or queries input through
instances of the user interface. The query component 112
may be configured to access the transaction log 150 and/or
other storage location (e.g., other transaction logs). The
query component 112 may be configured to access the
transaction log 150 through one or more of an Application
Programming Interface (API) providing direct access to the
transaction log 150 through one or more nodes, SQL data-
base, and/or by other mechanisms. The query component
112 may be configured to indirectly access the transaction
log 150 by accessing a web service that has access to the
transaction log 150. By way of non-limiting illustration, a
web service may compile and/or format information
recorded on transaction log 150 into a searchable format.

The query component 112 may be configured to search
the transaction log 150 (directly and/or indirectly) based on
the user-submitted search terms and/or queries. The query
component 112 may be configured to identify transaction(s)
recorded on the transaction log 150 that match and/or are
matched with the user-submitted search terms and/or que-
ries. Responsive to query component 112 identifying trans-
action(s) recorded on the transaction log 150 that match
and/or are matched with the user-submitted search terms
and/or queries, transaction component 108 may be config-
ured to obtain transaction information and/or other informa-
tion.

FIG. 3 illustrates a user interface 300, in accordance with
one or more implementations. The user interface 300 may
display one or more of a graph display portion 304 that
displays the at least a graph portion of a graph, an on-
demand display portion 306 that displays text such as
address-specific information and/or transaction flow-spe-
cific information, a table display portion 308 that displays
text representations of a transaction, and/or other content.

Users may initiate presentations within user interface 300
by submitting queries. Submission may be accomplished,
for example, by providing input into a search field 310. The
search field 310 may comprise, for example, a text input
box.

As used herein, the graph display portion 304 may display
one or more of graph nodes representing addresses, graph
edges between the graph nodes representing transaction flow
between the addresses, and/or other content. By way of
non-limiting illustration, in response to a search query and
identification of a first transaction, transaction information
for the first transaction may be obtained, and may provide a
basis from which visualizations within graph display portion
304 are generated. By way of non-limiting illustration, graph
display portion 304 may display one or more of a first graph
node 312 representing a first address, a second graph node
314 representing a second address, and a first graph edge
316 representing a first transaction flow between the first
address and the second address in accordance with the first
transaction. The first graph node 312 and/or second graph
node 314 may have one or more visual characteristics. By
way of non-limiting illustration, first graph node 312 may
have a graph node shape, such as a circle, which is repre-
sentative of an address class of the first address.

By way of non-limiting illustration, second graph node
314 may have a graph node shape, such as a square, which
may be representative of an address class of the second
address. By way of non-limiting illustration, second graph

node 314 may have fill pattern, such as diagonal lines, which
may be representative of a contract class of the second
address.

The first graph edge 316 may have one or more visual
characteristics. By way of non-limiting illustration, first
graph edge 316 may have an arrowhead pointing in the
direction of a transaction flow (e.g., from the first graph node
312 to the second graph node 314). The first graph edge 316
may have a visual characteristic based on a transaction class
of the first transaction. By way of non-limiting illustration,
first graph edge 316 may have a single line type line visual
characteristics which may be representative of the transac-
tion class of the first transaction.

In a scenario where the search query returns an identifi-
cation of the first transaction, the user interface 300 may
display the graph portion within the graph display portion
304 as a transaction-centric display. By way of non-limiting
illustration, the first graph edge 316 may be displayed
relatively centered within graph display portion 304 and/or
presented in other ways that makes the first graph edge 316
more prominent that other elements in graph display portion
304.

In some implementations, in response to user input
including selection of the first graph node 312, the user
interface 300 may display first information specific to the
first address within on-demand display portion 306 (e.g.,
within sub-portion 318). The first information may include
one or more of an amount of value associated with the first
address, an address class of the first address, and/or other
information. In some implementations, in response to input
including selection of the second graph node 314, the user
interface 300 may display second information specific to the
second address within on-demand display portion 306 (e.g.,
within sub-portion 318). The second information may
include one or more of an amount of value associated with
the second address, an address class of the second address,
a contract class of the second address, information about a
smart contract associated with the second address, and/or
other information. In some implementations, in response to
user input including selection of the first graph edge 316, the
user interface 300 may display third information specific to
the first transaction flow within on-demand display portion
306 (e.g., within sub-portion 320). The third information
may include one or more of an indication of the first address
as a sender, an indication of the second address as a
recipient, a characterization of value transferred in the first
transaction, a fee associated with the first transaction, a
timestamp for when the first transaction was executed, a
transaction class of the first transaction, a description of a
smart contract involved, and/or other information.

The table display portion 308 may display text represen-
tations of transactions. Such displays may represent a typical
form of presentation of information characterizing transac-
tions recorded on a transaction log. By way of non-limiting
illustration, the table display portion 308 may include a grid
of cells arranged in attribute-name columns and rows of
cells including text corresponding attributes names in the
attribute-named columns. The attributes may include one or
more of a timestamp, a sender, a recipient, an amount of
value transferred, and/or other attributes.

FIG. 4 illustrates a user interface 400, in accordance with
one or more implementations. The user interface 400 may
include similar elements as user interface 300 of FIG. 3, with
like reference numerals referring to like elements.

In some implementations, user interface 400 may be
presented as a result of a search query that identifies the first
address (as opposed to the first transaction in FIG. 3). In
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some implementations, user interface 400 may be presented
as a result of further user input into FIG. 3. By way of
non-limiting illustration, a user may provide further input
with respect to the first graph node 312. Such further input
may include, for example, selecting the first graph node 312
to cause a drop-down menu to be displayed, and selecting an
option to view a graph portion of the graph with the first
address being prominent. This may return a presentation that
graphically represents one or more transactions involving
the first address.

By way of non-limiting illustration, in response to iden-
tification of the first address, graph display portion 304 may
display one or more of the first graph node 312 representing
the first address, the second graph node 314 representing the
second address, the first graph edge 316 representing a first
transaction flow between the first address and the second
address in accordance with the first transaction, a third graph
node 402 representing a third address, and a second graph
edge 404 representing a second transaction flow between the
first address and the third address in accordance with the
second transaction.

In some implementations, third graph node 402 may have
a graph node shape, such as a diamond, which may be
representative of an address and/or contract class of the third
address. The second graph edge 404 may have one or more
visual characteristics. By way of non-limiting illustration,
second graph edge 404 may have an arrowhead pointing in
the direction of a transaction flow (e.g., from the third graph
node 402 to the first graph node 312). The second graph edge
404 may have a visual characteristic based on a transaction
class of the second transaction. By way of non-limiting
illustration, second graph edge 404 may have a jagged line
type line visual characteristic which may be representative
of the transaction class of the second transaction.

In a scenario where the search query returns an identifi-
cation of the first address (e.g., based on a result of the
search query and/or further user input into FIG. 3), the user
interface 300 may display the graph portion within the graph
display portion 304 as an address-centric display. By way of
non-limiting illustration, the first graph node 312 may be
displayed relatively centered within graph display portion
304 and/or presented in other ways that makes the first graph
node 312 more prominent that other elements in graph
display portion 304.

It is to be appreciated that the depictions and correspond-
ing descriptions for FIGS. 3-4 are for illustrative purposes
only and are not to be considered limiting. Instead, they are
illustrative of different ways transactions recorded on immu-
table distributed electronic storage media may be graphi-
cally represented in accordance with this disclosure.

Referring back to FIG. 1, in some implementations,
server(s) 102, client computing platform(s) 104, electronic
storage media 140, and/or external resources 126 may be
operatively linked via one or more electronic communica-
tion links. For example, such electronic communication
links may be established, at least in part, via network(s) 116
such as the Internet and/or other networks. It will be
appreciated that this is not intended to be limiting, and that
the scope of this disclosure includes implementations in
which server(s) 102, client computing platform(s) 104,
and/or external resource(s) 126 may be operatively linked
via some other communication media.

A given client computing platform may include one or
more processors configured to execute computer program
components. The computer program components may be
configured to enable an expert or user associated with the
given client computing platform to interface with system

100 and/or external resource(s) 126, and/or provide other

functionality attributed herein to client computing platform

(s) 104. By way of non-limiting example, a given client

computing platform may include one or more of a desktop

computer, a laptop computer, a handheld computer, a tablet

computing platform, a NetBook, a Smartphone, a gaming

console, and/or other computing platforms.

Server(s) 102 may include electronic storage 128, one or

more processors 130, and/or other components. Server(s)

102 may include communication lines, or ports to enable the

exchange of information with network(s) 116 and/or other

computing platforms. Illustration of server(s) 102 in FIG. 1

is not intended to be limiting. Server(s) 102 may include a

plurality of hardware, software, and/or firmware compo-

nents operating together to provide the functionality attrib-

uted herein to server(s) 102. For example, server(s) 102 may

be implemented by a cloud of computing platforms operat-

ing together as server(s) 102.

Electronic storage 128 may comprise non-transitory stor-

age media that electronically stores information. The elec-

tronic storage media of electronic storage 128 may include
one or both of system storage that is provided integrally (i.e.,
substantially non-removable) with server(s) 102 and/or
removable storage that is removably connectable to server(s)
102 via, for example, a port (e.g., a USB port, a firewire port,
etc.) or a drive (e.g., a disk drive, etc.). Electronic storage
128 may include one or more of optically readable storage
media (e.g., optical disks, etc.), magnetically readable stor-
age media (e.g., magnetic tape, magnetic hard drive, floppy
drive, etc.), electrical charge-based storage media (e.g.,
EEPROM, RAM, etc.), solid-state storage media (e.g., flash
drive, etc.), and/or other electronically readable storage
media. Electronic storage 128 may include one or more
virtual storage resources (e.g., cloud storage, a virtual pri-
vate network, and/or other virtual storage resources). Elec-
tronic storage 128 may store software algorithms, informa-
tion determined by processor(s) 130, information received
from server(s) 102, information received from client com-
puting platform(s) 104, and/or other information that
enables server(s) 102 to function as described herein.

Processor(s) 130 may be configured to provide informa-
tion processing capabilities in server(s) 102. As such, pro-
cessor(s) 130 may include one or more of a digital processor,
a physical processor, an analog processor, a digital circuit
designed to process information, an analog circuit designed
to process information, a state machine, and/or other mecha-
nisms for electronically processing information. Although
processor(s) 130 is shown in FIG. 1 as a single entity, this
is for illustrative purposes only. In some implementations,
processor(s) 130 may include a plurality of processing units.
These processing units may be physically located within the
same device, or processor(s) 130 may represent processing
functionality of a plurality of devices operating in coordi-
nation. Processor(s) 130 may be configured to execute
components 108, 109, 110, 111, 112, and/or other compo-
nents. Processor(s) 130 may be configured to execute com-
ponents 108, 109, 110, 111, 112, and/or other components by
software; hardware; firmware; some combination of soft-
ware, hardware, and/or firmware; and/or other mechanisms
for configuring processing capabilities on processor(s) 130.
As used herein, the term “component” may refer to a
component or set of components that perform the function-
ality attributed to the component. This may include one or
more physical processors during execution of processor
readable instructions, the processor readable instructions,
circuitry, hardware, storage media, or any other components.
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It should be appreciated that although components 108,
109, 110, 111, and/or 112 are illustrated in FIG. 1 as being
implemented within a single processing unit, in implemen-
tations in which processor(s) 130 include multiple process-
ing units, one or more of components 108, 109, 110, 111,
and/or 112 may be implemented remotely from the other
components. The description of the functionality provided
by the different components 108, 109, 110, 111, and/or 112
described below is for illustrative purposes, and is not
intended to be limiting, as any of components 108, 109, 110,
111, and/or 112 may provide more or less functionality than
is described. For example, one or more of components 108,
109, 110, 111, and/or 112 may be eliminated, and some or all
of its functionality may be provided by other ones of
components 108, 109, 110, 111, and/or 112. As another
example, processor(s) 130 may be configured to execute one
or more additional components that may perform some or all
of the functionality attributed below to one of components
108, 109, 110, 111, and/or 112.

FIG. 2a illustrates method 200 to train a machine learning
model, in accordance with one or more implementations.
The operations of method 200 presented below are intended
to be illustrative. In some implementations, method 200 may
be accomplished with one or more additional operations not
described, and/or without one or more of the operations
discussed. Additionally, the order in which the operations of
method 200 are illustrated in FIG. 2a and described below
is not intended to be limiting.

In some implementations, method 200 may be imple-
mented in one or more processing devices (e.g., a digital
processor, an analog processor, a digital circuit designed to
process information, an analog circuit designed to process
information, a state machine, and/or other mechanisms for
electronically processing information). The one or more
processing devices may include one or more devices execut-
ing some or all of the operations of method 200 in response
to instructions stored electronically on an electronic storage
medium. The one or more processing devices may include
one or more devices configured through hardware, firmware,
and/or software to be specifically designed for execution of
one or more of the operations of method 200.

An operation 202 may obtain transaction information
characterizing transactions recorded on a transaction log
stored in immutable distributed electronic storage. The
transaction information may include first transaction infor-
mation which characterizes a first transaction. Operation 202
may be performed by one or more hardware processors
configured by machine-readable instructions including a
component that is the same as or similar to transaction
component 108 (shown in FIG. 1 and described herein), in
accordance with one or more implementations.

An operation 204 may obtain classification information
identifying contract classes of the transactions. Individual
transactions may be classified in individual contract classes.
The classification information may include first classifica-
tion information which identifies a first contract class for the
first transaction. Operation 204 may be performed by one or
more hardware processors configured by machine-readable
instructions including a component that is the same as or
similar to classification component 109 (shown in FIG. 1
and described herein), in accordance with one or more
implementations.

An operation 206 may aggregate the transaction informa-
tion and the classification information into model training
information. Operation 206 may be performed by one or
more hardware processors configured by machine-readable
instructions including a component that is the same as or

similar to model component 111 (shown in FIG. 1 and
described herein), in accordance with one or more imple-
mentations.

An operation 208 may provide the model training infor-
mation to a machine learning model to train the machine
learning model. Training the machine learning model may
generate a trained machine learning model. The trained
machine learning model being trained to generate output
comprising the contract classes of new transactions. Opera-
tion 208 may be performed by one or more hardware
processors configured by machine-readable instructions
including a component that is the same as or similar to
model component 111 (shown in FIG. 1 and described
herein), in accordance with one or more implementations.

An operation 210 may effectuate storage of the trained
machine learning model. Operation 210 may be performed
by one or more hardware processors configured by machine-
readable instructions including a component that is the same
as or similar to model component 111 (shown in FIG. 1 and
described herein), in accordance with one or more imple-
mentations.

FIG. 2b illustrates method 220 to utilize a trained machine
learning model to classify smart contracts in transactions
recorded in immutable distributed electronic storage, in
accordance with one or more implementations. The opera-
tions of method 220 presented below are intended to be
illustrative. In some implementations, method 220 may be
accomplished with one or more additional operations not
described, and/or without one or more of the operations
discussed. Additionally, the order in which the operations of
method 220 are illustrated in FIG. 2b and described below
is not intended to be limiting.

In some implementations, method 220 may be imple-
mented in one or more processing devices (e.g., a digital
processor, an analog processor, a digital circuit designed to
process information, an analog circuit designed to process
information, a state machine, and/or other mechanisms for
electronically processing information). The one or more
processing devices may include one or more devices execut-
ing some or all of the operations of method 220 in response
to instructions stored electronically on an electronic storage
medium. The one or more processing devices may include
one or more devices configured through hardware, firmware,
and/or software to be specifically designed for execution of
one or more of the operations of method 220.

An operation 222 may obtain transaction information
characterizing transactions recorded on a transaction log
stored in immutable distributed electronic storage. The
transaction information may identify addresses associated
with the transactions and/or include other characterizations.
The transaction information may include second transaction
information which characterizes a second transaction and
identifies a first address and/or other addresses. Operation
222 may be performed by one or more hardware processors
configured by machine-readable instructions including a
component that is the same as or similar to transaction
component 108 (shown in FIG. 1 and described herein), in
accordance with one or more implementations.

An operation 224 may provide the transaction information
as input into a trained machine learning model. The trained
machine learning model may have been trained to provide
output comprising contract classes of the transactions. Indi-
vidual transactions may be classified in individual contract
classes. By way of non-limiting illustration, the second
transaction information may be provided as the input into
the trained machine learning model. Operation 224 may be
performed by one or more hardware processors configured
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by machine-readable instructions including a component
that is the same as or similar to model component 111
(shown in FIG. 1 and described herein), in accordance with
one or more implementations.

An operation 226 may obtain the output from the trained
machine learning model. Operation 226 may be performed
by one or more hardware processors configured by machine-
readable instructions including a component that is the same
as or similar to model component 111 (shown in FIG. 1 and
described herein), in accordance with one or more imple-
mentations.

An operation 228 may generate, from the output, classi-
fication information. The classification information may
include contract classes of the transactions. The classifica-
tion information may identify the first contract class of the
second transaction based on the output of the trained
machine learning model. Operation 228 may be performed
by one or more hardware processors configured by machine-
readable instructions including a component that is the same
as or similar to classification component 109 (shown in FIG.
1 and described herein), in accordance with one or more
implementations.

Although the present technology has been described in
detail for the purpose of illustration based on what is
currently considered to be the most practical and preferred
implementations, it is to be understood that such detail is
solely for that purpose and that the technology is not limited
to the disclosed implementations, but, on the contrary, is
intended to cover modifications and equivalent arrange-
ments that are within the spirit and scope of the appended
claims. For example, it is to be understood that the present
technology contemplates that, to the extent possible, one or
more features of any implementation can be combined with
one or more features of any other implementation.

What is claimed:
1. A system configured to train and utilize a machine

learning model to classify smart contracts in transactions
recorded in immutable distributed electronic storage, the
system comprising:

one or more processors configured by machine-readable
instructions to:
obtain transaction information characterizing transac-

tions recorded on a transaction log stored in immu-
table distributed electronic storage, wherein the
transaction information includes first transaction
information which characterizes a first transaction;

obtain classification information identifying contract
classes of the transactions, individual transactions
being classified in individual contract classes,
wherein the classification information includes first
classification information which identifies a first
contract class for the first transaction;

aggregate the transaction information and the classifi-
cation information into model training information;

provide the model training information to a machine
learning model to train the machine learning model
and generate a trained machine learning model, the
trained machine learning model being trained to
generate output comprising the contract classes of
new transactions;

effectuate storage of the trained machine learning
model;

obtain new transaction information characterizing the
new transactions recorded on the transaction log,
wherein the new transaction information includes
first new transaction information which characterizes
a second transaction and identifies a first address;

provide the new transaction information as input into

the trained machine learning model, such that the

first new transaction information is provided as the

input into the trained machine learning model;

obtain the output from the trained machine learning

model;

generate, from the output, new classification informa-

tion, the new classification information including the

contract classes of the new transactions, wherein the

new classification information includes first new

classification information which identifies the first

contract class of the second transaction based on the

output of the trained machine learning model;

generate user interface information defining instances

of a graphical user interface through which the

transactions are represented as a graph, the graphical

user interface displaying, within a field of two or

more dimensions, at least a graph portion of the

graph, wherein graph nodes within the graph repre-

sent the addresses, and the graph nodes are presented

with one or more visual characteristics assigned to

the addresses based on the contract classes, such that

the user interface information defines a first instance

of the graphical user interface through which the

second transaction is represented in a first graph

portion of the graph, the first instance of the graphi-

cal user interface displaying a first graph node rep-

resenting the first address;

establish one or more network connections with

remotely located client computing platforms associ-

ated with users; and

effectuate communication of the user interface infor-

mation to the remotely located client computing

platforms associated with the users to cause the

remotely located client computing platforms to pres-

ent the instances of the graphical user interface, such

that the user interface information defining the first

instance of the graphical user interface is communi-

cated to a first remotely located client computing

platform over a first network connection to cause the

first remotely located client computing platform to
display the first graph portion including the first
graph node presented with a first visual characteris-
tic.

2. The system of claim 1, wherein the contract classes
include one or more of an exchange contract class, a
liquidity contract class, a bridge contract class, a gambling
contract class, a stake contract class, a proxy contract class,
an initial offering contract class, or a factory contract class.

3. The system of claim 2, wherein the transaction infor-
mation included in the model training information includes
transaction feature values of transaction features of the
transactions, the transaction features including one or more
of an address feature, a timing feature, a value transferred
feature, a fee feature, a function call feature, a contract
parameter feature, a transaction frequency feature, a trans-
action volume feature, a transaction flow feature, or a user
interaction feature.

4. The system of claim 3, wherein aggregating the trans-
action information and the classification information into the
model training information includes generating correspon-
dence information, the correspondence information defining
correspondences between the transaction feature values and
the contract classes, such that the correspondence informa-
tion includes:
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a first correspondence between a first set of transaction

feature values of a first set of the transactions and the

exchange contract class;

a second correspondence between a second set of trans-

action feature values of a second set of the transactions

and the liquidity contract class;

a third correspondence between a third set of transaction

feature values of a third set of the transactions and the

bridge contract class;

a fourth correspondence between a fourth set of transac-

tion feature values of a fourth set of the transactions and

the gambling contract class;

a fifth correspondence between a fifth set of transaction

feature values of a fifth set of the transactions and the

stake contract class;

a sixth correspondence between a sixth set of transaction

feature values of a sixth set of the transactions and the

proxy contract class;

a seventh correspondence between a seventh set of trans-

action feature values of a seventh set of the transactions

and the initial offering contract class; and

an eighth correspondence between an eighth set of trans-

action feature values of an eighth set of the transactions

and the factory contract class.

5. The system of claim 1, wherein the one or more

physical processors are further configured by the machine-

readable instructions to:

generate address classification information specifying the

contract classes of the addresses identified in the new

transactions, individual addresses being classified in

the individual contract classes of individual new trans-

actions in which they are identified, wherein the

address classification information includes first new

classification information which identifies the first con-

tract class for the first address by virtue of the first

contract class of the second transaction;

assign the one or more visual characteristics to the indi-

vidual addresses based on the individual contract

classes, such that the first address is assigned the first

visual characteristic based on classification in the first

contract class.
6. The system of claim 1, wherein second new transaction

information characterizes a third transaction and identifies a
second address, and the one or more physical processors are
further configured by the machine-readable instructions to:

provide the second new transaction information as the
input into the trained machine learning model;

generate, from the output, the new classification informa-
tion including a second contract class of the third
transaction; and

assign a second visual characteristic to the second
address.

7. The system of claim 6, wherein the first visual char-
acteristic is a first shape and the second visual characteristic
is a second shape; or wherein the first visual characteristic is
a first color and the second visual characteristic is a second
color.

8. A method to train and utilize a machine learning model
to classify smart contracts in transactions recorded in immu-
table distributed electronic storage, the method being imple-
mented in a computer system comprising one or more
physical processors, the method comprising:

obtaining, by one or more physical processors, transaction
information characterizing transactions recorded on a
transaction log stored in immutable distributed elec-

tronic storage, wherein the transaction information
includes first transaction information which character-
izes a first transaction;

obtaining, by the one or more physical processors, clas-
sification information identifying contract classes of
the transactions, individual transactions being classi-
fied in individual contract classes, wherein the classi-
fication information includes first classification infor-
mation which identifies a first contract class for the first
transaction;

aggregating, by the one or more physical processors, the
transaction information and the classification informa-
tion into model training information;

providing, by the one or more physical processors, the
model training information to a machine learning
model to train the machine learning model and generate
a trained machine learning model, the trained machine
learning model being trained to generate output com-
prising the contract classes of new transactions;

effectuating, by the one or more physical processors,
storage of the trained machine learning model;

obtaining, by the one or more physical processors, new
transaction information characterizing the new trans-
actions recorded on the transaction log, wherein the
new transaction information includes first new trans-
action information which characterizes a second trans-
action and identifies a first address;

providing, by the one or more physical processors, the
new transaction information as input into the trained
machine learning model, including providing the first
new transaction information as the input into the
trained machine learning model;

obtaining, by the one or more physical processors, the
output from the trained machine learning model;

generating, by the one or more physical processors and
from the output, new classification information, the
new classification information including the contract
classes of the new transactions, wherein the new clas-
sification information includes first new classification
information which identifies the first contract class of
the second transaction based on the output of the
trained machine learning model;

generating, by the one or more physical processors, user
interface information defining instances of a graphical
user interface through which the transactions are rep-
resented as a graph, the graphical user interface dis-
playing, within a field of two or more dimensions, at
least a graph portion of the graph, wherein graph nodes
within the graph represent the addresses, and the graph
nodes are presented with one or more visual charac-
teristics assigned to the addresses based on the contract
classes, such that the user interface information defines
a first instance of the graphical user interface through
which the second transaction is represented in a first
graph portion of the graph, the first instance of the
graphical user interface displaying a first graph node
representing the first address;

establishing, by the one or more physical processors, one
or more network connections with remotely located
client computing platforms associated with users; and

effectuating, by the one or more physical processors,
communication of the user interface information to the
remotely located client computing platforms associated
with the users to cause the remotely located client
computing platforms to present the instances of the
graphical user interface, such that the user interface
information defining the first instance of the graphical
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user interface is communicated to a first remotely

located client computing platform over a first network

connection to cause the first remotely located client

computing platform to display the first graph portion

including the first graph node presented with a first

visual characteristic.

9. The method of claim 8, wherein the contract classes

include one or more of an exchange contract class, a

liquidity contract class, a bridge contract class, a gambling

contract class, a stake contract class, a proxy contract class,

an initial offering contract class, or a factory contract class.

10. The method of claim 9, wherein the transaction

information included in the model training information

includes transaction feature values of transaction features of

the transactions, the transaction features including one or
more of an address feature, a timing feature, a value trans-
ferred feature, a fee feature, a function call feature, a
contract parameter feature, a transaction frequency feature,
a transaction volume feature, a transaction flow feature, or a
user interaction feature.

11. The method of claim 10, wherein the aggregating the
transaction information and the classification information
into the model training information includes generating
correspondence information, the correspondence informa-
tion defining correspondences between the transaction fea-
ture values and the contract classes, wherein the correspon-
dence information includes:

a first correspondence between a first set of transaction
feature values of a first set of the transactions and the
exchange contract class;

a second correspondence between a second set of trans-
action feature values of a second set of the transactions
and the liquidity contract class;

a third correspondence between a third set of transaction
feature values of a third set of the transactions and the
bridge contract class;

a fourth correspondence between a fourth set of transac-
tion feature values of a fourth set of the transactions and
the gambling contract class;

a fifth correspondence between a fifth set of transaction
feature values of a fifth set of the transactions and the
stake contract class;

a sixth correspondence between a sixth set of transaction
feature values of a sixth set of the transactions and the
proxy contract class;

a seventh correspondence between a seventh set of trans-
action feature values of a seventh set of the transactions
and the initial offering contract class; and

an eighth correspondence between an eighth set of trans-
action feature values of an eighth set of the transactions
and the factory contract class.

12. The method of claim 8, further comprising:
generating address classification information specifying

the contract classes of the addresses identified in the
new transactions, individual addresses being classified
in the individual contract classes of individual new
transactions in which they are identified, wherein the
address classification information includes first new
classification information which identifies the first con-
tract class for the first address by virtue of the first
contract class of the second transaction;

assigning the one or more visual characteristics to the
individual addresses based on the individual contract
classes, such that the first address is assigned the first
visual characteristic based on classification in the first
contract class.

13. The method of claim 8, wherein second new transac-
tion information characterizes a third transaction and iden-
tifies a second address, and wherein the method further
comprises:

providing the second new transaction information as the
input into the trained machine learning model;

generating, from the output, the new classification infor-
mation including a second contract class of the third
transaction; and

assigning a second visual characteristic to the second
address.

14. The method of claim 13, wherein the first visual
characteristic is a first shape and the second visual charac-
teristic is a second shape; or wherein the first visual char-
acteristic is a first color and the second visual characteristic
is a second color.

15. The method of claim 8, wherein the transactions are
recorded on the transaction log with smart contract code.
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